Offre d'emploi Wind farm flow control design based on dynamic wake models

Wind farm flow control design based on dynamic wake models

IFP Énergies nouvelles https://www.handicap.fr/static/dyn/emploi/org21/img_205785.png https://www.ifpenergiesnouvelles.fr/
Date de parution

Descriptif

Si on vous dit… Prix Nobel ?
Top 10 mondial des dépôts de brevets pour le recyclage des plastiques ?
Pionnier de la recherche en captage/stockage du CO2 ?
Au cœur de + de 100 partenariats industriels ?
La réponse est IFP Energies nouvelles (IFPEN) !

Venez contribuer à une recherche répondant aux enjeux énergétiques, disposant d'équipements de pointe.
Trouvez du sens en intégrant un collectif engagé au service de la transition écologique.
>>> Rejoignez-nous !

Nous sommes 1600 collaborateurs répartis sur 2 centres de recherche : Rueil-Malmaison (92 - proche Paris) & Solaize (69 - proche Lyon).

L'ouverture et la diversité font notre force.
Intégrez une entreprise inclusive favorisant l'emploi des personnes en situation de handicap.
Vivez l'égalité professionnelle IFPEN = 100 sur 100 sur l'index Egalité femmes-hommes.
Découvrez notre accord télétravail jusqu'à 2,5 jours par semaine.

IFP Energies nouvelles, ensemble pour développer aujourd'hui les innovations de demain.

In the field of wind energy, operators today are concerned with optimizing the use of wind turbines in wind farms, so as to either maximize energy production, or produce energy at the right time and in the right quantity. In order to meet the needs of the power grid. This approach also aims to limit the mechanical fatigue of the wind farm's turbines, with a view to minimizing the overall cost of wind power. Interactions between a wind turbine's wake and downstream turbines can be reduced by controlling the yaw angle of the turbine rotor and the power output. This can allow to both minimize production losses and mechanical fatigue within the farm.

In this context, IFPEN is developing wind farm flow control algorithms. Wind farm flow control is still in an emerging phase, and is beginning to see the first full-scale experiments. Existing wind farm flow control solutions in the literature can be classified into two broad categories:

* Reinforcement learning, where the optimal solution is searched by trial and error on the system;
* Solutions based on optimization via a wind farm flow model.

For optimization-based solutions, there is a need for a reasonably simplified wind farm flow model to be integrated into the algorithm. Wind farm flow models fall into three categories:

* Models based on a precise simulation of the atmospheric boundary layer via the equations of fluid mechanics
* Simplified dynamic models, which describe only the main dynamics of the flow

Static models, which describe the average flow behavior for a set of inputs

Currently, most optimization-based solutions use static models, but researchers are also interested in the use of medium-fidelity models, which would allow the dynamics present in the flow to be taken into account and thus solve an optimal control problem. Although a few solutions have emerged, their relevance to industry the problems has not yet been demonstrated.

Missions

It is in this context of research and development that the apprenticeship takes place. The objectives are as follows:

* Identify medium-fidelity models suitable for use in an optimal control problem from the existing literature, and adapt them if necessary;
* Develop optimal control solutions based on medium-fidelity models, drawing from existing literature or designing innovative approaches;
* Evaluate the benefits of this type of solution compared with static model-based solutions, using data from wind farms and high-fidelity simulators.

These solutions will be evaluated in simulation and, if conclusive, may be tested in wind tunnels.

You will work closely with a team of engineers. You will be familiar with modelling techniques and advanced optimal control strategies. Working with our team offers a unique opportunity to conduct cutting-edge research applied to a major industrial challenge.

Profils

Techniques applied during the apprenticeship

* Control systems engineering
* Optimal control / optimisation
* Computer programming
* Dynamic modelling of wind turbine wakes



Requested profile and skills

* Apprentice engineer for Applied mathematics, Control systems engineering or mechanical engineering or for the IFP School's Offshore Wind Project Development programme
* Interest for research and development in wind energy
* Specialization in applied mathematics, control systems or mechanical engineering
* Proficiency in Python and/or Matlab programming
* Curiosity, autonomy and good interpersonal skills
  • Lieu : Solaize (69)
  • Métier : Recherche
  • Contrat : Alternance
  • Expérience : Débutant
  • Niveau d'études : Master, diplôme d'études approfondies, diplôme d'études supérieures spécialisées, diplôme d'ingénieur (Bac+5)
  • Prise de poste : Dès que possible
  • Durée : 0
  • Lieu : Solaize (69)69360Auvergne-Rhône-Alpes
  • Famille de métiers : Etude/recherche
  • Métier : Recherche
  • Contrat : Alternance
  • Expérience : Débutantno requirements
  • Niveau d'études : Master, diplôme d'études approfondies, diplôme d'études supérieures spécialisées, diplôme d'ingénieur (Bac+5)postgraduate degree
  • Prise de poste : Dès que possible
  • 2025-05-01
  • EUR
  • 1
  • FULL_TIME
  • IFP Énergies nouvelles2025-1795_1741965461
  • true
  • LieuSolaize (69)69360
  • ContratAlternance
  • ExpérienceDébutant
  • Niveau d'étudesBac+5
  • Prise de posteDès que possible